Coordinating Biomass Research

Research into all facets of biomass-supported industries is taking off at schools throughout the country. North Dakota State University is combining and coordinating its efforts to a better biobased program.
By Mary-Anne Fiebig
Involvement in biobased research and products is not a new interest for North Dakota State University. Beginning in 1905, the Fargo, N.D.-based land-grant university conducted polymers and coatings research centered on the use of linseed oil as a base for paint. Today, with a growing emphasis on alternative fuel and energy sources and the use of entire plants for an increasing array of products, biobased research continues to be the focus for many NDSU research efforts.

To coordinate this activity, the university formed the NDSU Biomass and Bioproducts Initiative in early 2007. It culminated in the North Dakota State Board of Higher Education approving the NDSU Bio Energy and Product Innovation Center (NDSU BioEPIC) in mid-November 2007. The center's purpose is to serve as a single site within the university to develop, coordinate and promote the development of bio-related activities at NDSU and in North Dakota.

"What we've been looking at is to effectively pull together the full set of capabilities within the North Dakota State University system and position ourselves to be partners with other organizations and companies looking to emerge and grow in North Dakota," says D.C. Coston, vice president for agriculture and university extension.

The multidisciplinary and multi-department center will be headed by two co-directors: Ken Hellevang, a professor in the department of agricultural and biosystems engineering, and David Saxowsky, an associate professor in the department of agribusiness and applied economics. Both were instrumental in the development of the center.

More than 15 departments on campus and eight Research Extension Centers throughout North Dakota are researching answers to various aspects of energy and biobased production. To begin coordination of research and activities, a series of forums was held designed to raise awareness of current research, education, and extension achievements and directions. At each forum, four or five researchers or extension specialists from various departments and colleges showcased their work in the biobased arena, which was
followed by group discussion. The forums promoted valuable interaction and collaboration.

A daylong NDSU BioOpportunities Workshop, held in May 2007, included several breakout discussions involving NDSU faculty, researchers and extension personnel, as well as invited guests from private industry, government, producers and stakeholders. Approximately 150 people attended.

Broadly, the center's objectives are to continue developing frontier technologies in the biomass and bioproducts arena, coordinate research strategies and activities, utilize biomass and bioproducts to eliminate waste and increase efficiency, energize business and industry investment, stimulate student interest and learning, and revitalize communities throughout the state and region.

"We are convinced that bio-opportunity is very much an interdisciplinary effort," Saxowsky says. "The reason NDSU is in such a strong position is because we have this wide range of discourse well-established."

More than Biofuels
Today, most news reports appear to be concentrated on biobased fuels, especially ethanol extracted from corn and other sources, such as corn stalks, wheat straw and grasses, including switchgrass. But many other products are being discovered. For example, wheat straw can be used for more than an ethanol feedstock. One coproduct of creating ethanol from wheat is unhydrolyzed cellulose, which can be processed to produce cellulose nanofibers or nanowhiskers.

Nanowhiskers can be used as a substitute for fiberglass and petroleum-based composites. Biobased composites are easier to recycle. Nanowhiskers also have the potential to make composite materials twice as strong as their petroleum-based counterparts. Cars made with biocomposites can be lighter, which leads to increased mileage per gallon of fuel without compromising strength and safety.

Adding nanowhisker production to a wheat straw-to-ethanol plant adds an estimated $770,000 in direct economic impact, according to a study by Larry Leistritz, NDSU professor of agribusiness and applied economics. His study has been ongoing the past three years. Leistritz's program, in collaboration with Lansing, Mich.-based MBI International, is approaching Phase 2 in the project that involves setting up a pilot plant. This stage is required in the commercialization of nanowhisker production. Development of the next stage will have major ramifications to the success of this project and to the state.

In the same area of research, but in another part of campus, Chad Ulven, assistant professor of mechanical engineering and applied mechanics, develops composites that are made with biobased polymers and natural fibers. Continuous flax fiber or short corn fibers are used to strengthen various plastics, just as rebar is used to reinforce concrete.
"In terms of assisting the biofuels production, this is an important area of research," Ulven says. "The byproducts created from biofuel production need some type of use. With biobased polymers and natural fibers, you're getting a much higher value for the byproducts."

Continuing research in the biobased industry not only involves converting plant material into biobased products, but also producing a healthy plant and improving the plant's performance for that specific purpose. The NDSU Oilseed Development Center of Excellence is one example of this important research area. During the past few years, the center has obtained new and improving canola germplasm (genetic material) that has increased oil content of the seed from 16 percent to 18 percent. This result alone has an estimated annual value to North Dakota of $22 million, based on current acreage. If the demand increases as anticipated, it could escalate to approximately $110 million per year.
Benefits of biorelated research includes increased employment and educational opportunities, as well as increased income for producers and processors in North Dakota and the region. NDSU has classes to educate tomorrow's engineers and scientists in areas relating to biofuels and bioprocessing.

In addition, NDSU faculty are sharing their expertise statewide. For example, Hellevang, also an NDSU Extension Service agricultural engineer, is involved in the North Dakota Biomass Energy Task Force and the North Dakota Alliance for Renewable Energy. Other faculty are demonstrating canola biodiesel production and use, and providing off-campus educational programming on biofuels and agricultural energy efficiency. Faculty are also working with groups, businesses and communities across the state to develop the future of renewable energy and bioproducts.

"It is this team approach that will help North Dakota communities participate in the bioeconomy," Hellevang says. "It is continuing the land-grant philosophy of NDSU to foster the
economic prosperity and quality of life of the people we serve."

NDSU has the expertise and experience to research biobased products from the ground up-from soil to product-to their effect on community and the region. Collaboration among the researchers and educators provides a complete range of services. NDSU BioEPIC will continue its mission to coordinate and encourage interaction across disciplines on campus and throughout the state and region to enhance and promote a sustainable future for generations to come.

Mary-Anne Fiebig works with BioEPIC at North Dakota State University. Reach her at or (701) 231-8190. For more information, visit